OVERVIEW

- Project Start Oct. 2021
- Project End Dec. 2024

Total Project Funding - \$6.24M \$5.0M (Fed) & \$1.24M (Non-Fed) Total FY2022 - \$2.65M

SEVCON

Technologies

Santroll's LV

BACKGROUND

- BorgWarner is now the largest North American producer of hybrid electric vehicle (HEV) and EV components. We supply any combination of electrification components such as inverters, chargers, DC/DC converters, battery management systems, domain controllers, on-board charger and DC/DC combination 2 units as well as and 3-in-1 propulsion drive-unit systems.
- Project Charging Forward initiative set to grow revenue to 45% of total revenue by 2030.
- BorgWarner has developed and demonstrated state-of-theart (SOTA) power semiconductor solutions and building block technologies to reduce traction inverter size and cost.

Year 1

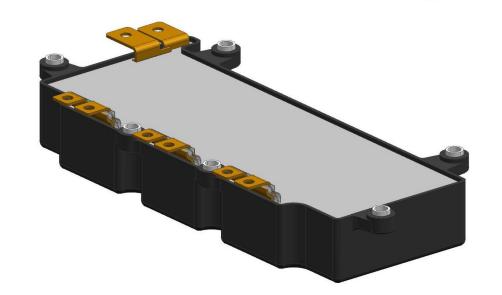
TECHNOLOGY INNOVATION AREAS

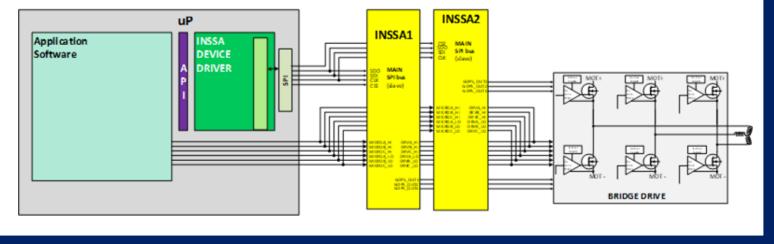
- Highly integrated and epoxy overmolded power module with doublesided cooling, permitting operational junction temperature at or just below 200°C. Subsequently, enabling a higher current carrying capability with similar or less WBG (i.e., SiC) active material area, while maintain low system losses.
- Next generation cooling module with novel fin structure enabling a scalable and cost-effective solution. Permitting high temperature and performance values based on the new power module requirements.
- Next generation *capacitor technology* with high temperature (> 160°C) capability and self-healing properties as well as 300% higher energy density. Enabling significant volume reduction in power stack (i.e., power modules, capacitor and busbar) sub-assembly for inverter packaging.
- New electrical control architecture based on next generation μC and ASICs providing faster feedback loop for sensing, control, and actuation. To achieve performance and efficiency targets as well as realizing future functional safety requirements (i.e., ASIL-D).


EXPECTED OUTCOME

Develop, build, and verify new inverter concept with prototype power | CHALLENGES stack based on a new power module design in conjunction with a novel thermal solution and high temperature capacitor technology as well as new control architecture.

NEXT STEPS


- Component requirements, design, simulation as well as system architecture and packaging studies.
- ≥ 190°C junction temp SiC die
 - ≥ 230°C die bonding material



Nano-lamination structure Integrated DC busbars ≥ 1000Vdc

Next gen µC & ASIC **Smart Gate Driver** Current Sensing IC

Access/availability of prototyping machinery and material composition for die-attach as well as over molding within small design space (i.e., thickness).

OBJECTIVE

Develop and demonstrate traction inverter to meet DOE's 2025 targets of 100kW/L power density at or below \$2.7/kW cost.

PROJECT TIMELINE Research, Technology Down **Selection and Component Design** (Q4-21 - Q4-22)

Rotating electric

(i.e., motors)

Industrial-focused

power electronics

Electronics for start-

up EV customers

Power electronics

and software

Battery packs and

LV eMotors

Component and Subassembly Year 2 (Q1-23 - Q4-23)Verification and System Design

Year 3 **Prototype Manufacturing and** Q1-24 - Q4-24Verification/Validation (V&V)

KEY PARTNERS

- Infineon Technologies Americas Corp. Leading supplier of semiconductor devices used in automotive, industrial, commercial and high reliability applications.
- **Wolfspeed, Inc.** (Vendor) Provider for > 60% of the SiC wafers used in the SiC power semiconductor industry.
- PolyCharge America, Inc. Strategic developer and commercializing its solid-state polymer nanolaminate (Nanolam[™]) capacitor technology for use in inverters of HEVs and EVs.
- National Renewable Energy Laboratory (APEEM) Research partner on advanced thermal management.
- Virginia Polytechnic Institute & State University Research partner on power processing and distribution.

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

David Bauer (PI) Global Program Manager System Strategy & Platform BorgWarner, PDS DaBauer@BorgWarner.com

Kamal Thakur **Program Manager** BorgWarner, PDS KThakur@BorgWarner.com

Harsha Nanjundaswamy Global Chief Engineer BorgWarner, PDS HNanjundaswa@BorgWarner.com

